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Abstract

Receiver operating characteristic (ROC) curves evaluate the discriminatory power
of a continuous marker to predict a binary outcome. The most popular parametric
model for an ROC curve is the binormal model, which assumes that the marker,
after a monotone transformation, is normally distributed conditional on the out-
come. Here we present an alternative to the binormal model based on the Lehmann
family, also known as the proportional hazards specification. The resulting ROC
curve and its functionals (such as the area under the curve and the sensitivity at a
given level of specificity) have simple analytic forms. Closed-form expressions for the
functional estimates and their corresponding asymptotic variances are derived. This
family accommodates the comparison of multiple markers, covariate adjustments and
clustered data through a regression formulation. Evaluation of the underlying as-
sumptions, model fitting and model selection can be performed using any off the shelf

proportional hazards statistical software package.
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1 Introduction

ROC curves have become the standard tool for evaluating the discriminatory power
of medical diagnostic tests and they are commonly used in assessing the predictive
ability of binary regression models. In a typical setting one has a binary indicator
and a set of predictions or marker values. The goal is to see how well the marker

values predict the binary indicator. The principal idea is to dichotomize the marker



at various thresholds and compute the resulting sensitivity and specificity. A plot of
sensitivity (true positive fraction or TPF) versus one minus specificity (false positive
fraction or FPF) is the ROC curve. It provides a complete picture of various levels
of sensitivity and specificity that can be achieved using the marker. When dealing
with predictions from a regression model instead of a diagnostic marker, the same
principle applies so we will use the term “marker” generically from this point on to
refer to the variable for which an ROC curve is desired.

An empirical ROC curve may be obtained by connecting the observed (TPF, FPF)
pairs. The area under the empirical ROC curve is a one-to-one function of the two-
sample Wilcoxon statistic and Somers’ D (Pratt and Gibbons, 1981). The empirical
curve is attractive because it makes minimal assumptions, but it does not generalize
easily to allow covariate adjustments or clustered data. When such generalizations
are needed, most analysts work with the binormal model. The binormal model as-
sumes that the marker values follow a normal distribution, possibly after a monotone
transformation (Dorfman and Alf, 1996; Hanley, 1996). The normalizing transforma-
tion can be pre-specified or estimated from the data. In the latter case the Box-Cox
transformation has been widely used in practice (Zou and Hall, 2000; Faraggi and
Resier 2002). More recent work has extended the use of Box-Cox transformation to
the case of covariate adjustment (Faraggi, 2003; Schisterman, 2004).

One notable exception is the work of Metz, Herman and Shen (1998), which uses
the concept of “truth state runs” and a latent variable binormal model, where each
segment of the model is defined by a single truth state run. While this method
does not require a transformation, truth state runs need to be of sufficient length

to estimate the corresponding segment of the latent variable model. This can be



problematic, especially in the case of covariate adjustments and clustered data.

The literature is replete with regression analyses of ROC curves, a framework
which provides adjustments for covariates and clustering. Some examples from re-
gression methods for ROC curves are Zou and Hall (2000), Alonzo and Pepe (2002)
and Janes and Pepe (2005). A recent survey of this literature is given by Pepe (2003).
The binormal model, after specifying the transformation, can be formulated as a re-
gression model, with the marker value as the dependent variable and the disease
status as the independent variable. This can be easily extended by adding covari-
ates and covariate-disease status interactions to the right hand side of the model.
The binormal model has the advantage of using familiar methods based on the nor-
mal distribution, but assumes a normalizing transformation can be determined. An
example of a binormal regression model is presented by Hunink et al (1990).

Pepe (1998) classified ROC regression procedures under three headings: Modeling
the marker values, modeling summary measures of accuracy and direct modeling of
ROC curves. As she noted, modeling summary measures of accuracy does not allow
for continuous covariates, hence it is not a regression model in the conventional sense.
The direct modeling of ROC curves, while making fewer assumptions, has not yet been
widely adopted, possibly due to computational challenges (Pepe, 2000 and Alonzo and
Pepe, 2002). Another disadvantage for direct modeling is the lack of goodness of fit
diagnostics, although recent work by Cai and Zheng (2007) may remedy this.

In summary, we find that modeling the marker values has many practical ad-
vantages, including ease of implementation and the availability of model checking
methods. In this article, we present a semiparametric model for the marker values

based on the proportional hazards specification. The proposed method enables model



fitting, inference, and diagnostics for model specification, using standard statistical
software. The proportional hazards framework for the ROC analysis is presented in
Section 2. Section 3 covers covariate adjustments, comparison of markers, and the
incorporation of clustered data. Section 4 presents an analysis of the utility of chem-
ical shift magnetic resonance imaging in differentiating normal and benign vertebral
marrow processes using the proposed model. Section 5 contains a discussion and pro-
vides our conclusions. We present in the appendix SAS, R and STATA code to obtain

the ROC curves and diagnostics corresponding to the Lehmann family.

2 Model

Let V be the marker, D = 0,1 be the binary indicator and let Sp = Sp—g and S; =
Sp=1 denote the survival functions (one minus the cumulative distribution function)
of the marker for the two different values of the binary indicator. A semiparametric

relationship is proposed
S1(v) = [So(v)]”, (1)

where the underlying survival distributions (S7, Sp) are left unspecified, but their
relationship is governed by a single parameter 6. This semiparametric relationship
between survival distributions was originally proposed by Lehmann (1953). We will
call (1) the Lehmann assumption and the resulting ROC curves, the Lehmann family
of ROC curves. If subjects with and without disease are labeled D =1 and D = 0
respectively, and subjects with disease are more likely to have higher marker values,
then the survival functions for the two groups are oriented by the specification 0 <

0 < 1. The parameter 0! represents the odds that a subject belonging to the D = 1



group has a higher marker value relative to a subject belonging to the D = 0 group.

We will use x to denote the false positive fraction and y to denote the correspond-
ing true positive fraction so that the (x,y) pairs form the ROC curve. As shown by
Le (1997), the relationship between the false positive fraction and the true positive

fraction can be represented as
y = S1(Sy H(x)), = €]0,1]. (2)
Using (1) in (2) yields the general form of the Lehmann family of ROC curves:
y =a’. (3)
We note that if 0 < 6 < 1, then (3) is concave everywhere on the unit interval, a
desirable property for ROC curves, since it implies a monotone increasing curve that
lies above the 45-degree line. Figure 1 shows a spectrum of ROC curves belonging to
this family.
An alternative form for the Lehmann relationship between two groups is based on

the hazard function. Defining the hazard function as

P < A >
h(v):AlimO r(v_V<Z~I— v|V > )
v— v

the Lehmann specification in (1) may be rewritten as

% =40. (4)
Note that in this case h = hp—; and h= hp—o, but the general notation will be help-
ful in subsequent sections. The identity (4) is the reason the Lehmann relationship is
referred to as the proportional hazards specification (Cox, 1972, 1975). This connec-

tion to the proportional hazards model provides an extensive body of literature and

software for the estimation and inference of the odds parameter 6.
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Proportional hazards regression modules in statistical software can be used for
this purpose using V' as the outcome and D as the independent variable. Formally,

we set
hi(v, D) = ho(v) exp{SD}

and 6 = e®. One can estimate 3, and consequently, #, using the Cox partial likelihood.

We will use 3 for the partial likelihood estimate, and
V(0) = exp{28}V(3)

for the estimated variance of é, where V(B) is computed as the inverse of the infor-
mation matrix from the partial likelihood.

Estimation and inference of the ROC curve and continuous measures of the curve,
are derived from the proportional hazards framework. For example, the pointwise

variance estimate of the smooth ROC curve is, using the delta method, given by
~ 2 N
V(y(e) = [+"1ogz] V(D). (5)
The area under the ROC curve is estimated as
—_— 1 A
AUC:/ ¥dr = (0+1)7" (6)
0
and its variance is estimated by
V(AUC) = (6 + 1)V (). (7)
Finally, the partial area under the curve up to xy, pAUC (), can be estimated using

pAUC (z) = / 6+ 1)'2" ' da (8)
0



with variance estimate

. V(0)  2a5logaeV (6)
()" O+ A+

_ 20 \? [ 1080 v0)

V(pAUC(zo)) = <A0 )
0+1

(9)

Although the ROC curve is generically represented as a function of survival func-

tions, the Lehmann specification of the ROC curve, given by (3), depends only on

the odds parameter #, and does not require estimation of the survival functions. In

addition, there are several methods developed and implemented for model diagnos-

tics (Lin et al., 1993; Grambsch and Therneau, 1994) that can assist the analyst in

determining if the proportional hazards assumption is warranted for the specific ROC

analysis. A graphical approach for checking the proportional hazards specification,

based on the partial sums of the residuals, is demonstrated in our data example in

Section 5.

3 Further Applications of Regression

The Lehmann specification of the ROC curve lends itself to extensions in several
important contexts: covariate adjustment, comparison of ROC curves for several
markers, and clustered data. All of these can be represented in a proportional hazards

regression framework, as discussed in this section.

3.1 Covariate Adjustments

Covariate adjustment is important in ROC analysis when the marker threshold for

group membership is a function of a concomitant covariate. For example, the Prostate



Specific Antigen (PSA) level is a validated marker for prostate cancer. PSA, however,
increases as men age. Thus, an adjustment for age would improve an ROC analysis
using PSA as a marker for prostate cancer.

Tosteson and Begg (1988) showed that a regression model with an interaction
term can be used to estimate a covariate-adjusted ROC curve. In the context of the

Lehmann family this amounts to a proportional hazards regression model,
W(V|D,U) = h(v) exp{B1D + 3,U + 33 DU} (10)

with U as the concomitant covariate. The ratio of the two hazard models with group

membership D =1 and D = 0 results in

WVID=10) 4. a0
— Hiths 1
h(VID=0,U0)  © ’ (11)

which yields the covariate-adjusted ROC curve
y(u, z) = 2" (12)

where

0(u) = exp{S1 + Bsu} (13)
The interaction between D and U in the model enables the hazard ratio to reflect the
effect of the covariate U, otherwise the right hand side of (11) would simply be €.
The use of the interaction term in the ROC analysis is not specific to the proportional
hazards model and can be observed in all regression models following the Tosteson-
Begg approach. Note that expressions (5-9) still hold when 0 is replaced by 9(u),
which itself is a contrast that can be estimated from the underlying regression model
along with its standard error. Covariate adjustment can be extended to multiple

covariates using (10).



3.2 Clustered Data

Clustered data arise naturally in many radiologic imaging studies. As technology ad-
vances, so-called full-body scans render multiple evaluations possible for each patient.
For example, for a cancer patient one may evaluate the primary tumor, local lymph
nodes and distant metastatases all on the same scan leading to clustered data. It is
possible to obtain ROC curves within the Lehmann family to take into account the
clustering. Let k = 1,..., K, index the observations on the i*" patient and consider

the following model
h(V|Dys) = ho(v) exp{ 8Dy} (14)

which gives rise to the same ROC curve as before

y(z) = 2° (15)

where § = e?. Assuming the Lehmann specification holds, the estimate of 3 obtained
from the partial likelihood score function are consistent, even in presence of clustering.
Estimation of standard error requires the use of a robust covariance estimate to
account for the intracluster dependence as in Lee, Wei, and Amato (1992). The

variance of 3 can be consistently estimated by a~'wa !

, where a is the negative
second derivative from the partial likelihood and w is the estimated covariance from
the partial likelihood score function. Due to its form, this estimator of the variance is
sometimes called a sandwich estimator. These estimates are routinely produced with
proportional hazards regression software (see Appendix).

It is possible to use covariates on the right hand side of (14) in exactly the same

way as in (10). If U denotes the covariate of interest then the following Cox model

10



will provide covariate-adjusted ROC curves under clustering:
h(VID,U) = h(v) exp{1D + B,U + B3DU}. (16)

as long as the standard errors are obtained through the sandwich estimator.

3.3 Comparing the ROC Curves of Several Markers

The comparison of two markers is an important application of ROC curves. In ra-
diology, a new imaging technique (such as positron emission tomography) may be
in competition with standard of care (such as computed tomography) in detecting
disease. In the field of biomarkers it may be of interest to compare several ways
of evaluating a marker. An example from the field of prostate cancer surveillance
is whether total PSA or free PSA is a better predictor of disease recurrence. In
prediction modeling, there may be competing models. For example, using the same
data one may use different statistical techniques to make predictions such as logistic
regression, classification trees, or neural networks. Another possibility is that one
might have an emerging predictor variable such as a genetic variant, and it would be
of interest to see if a prediction model using the new predictor variable along with
the traditional variables is better than one that uses traditional variables only.
From our regression standpoint, comparison of two markers is a special case of

covariate adjustment. Define U as an indicator variable for marker A vs marker B:
1 if marker A

U= (17)
0 if marker B

and consider the model (10):

WV|D,U) = h(v) exp{D + U + B DU}
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The two markers have identical ROC curves when 33 = 0 so a test for the significance
of this coefficient serves as a comparison for the two markers.

One practical aspect where marker comparison differs from other covariate adjust-
ments is study design. Most marker comparison studies are paired in nature because
it is usually feasible to evaluate the competing markers within patient. The robust
estimation of standard error for clustered data, discussed in the previous section, can
be applied to this situation. A Wald test for the equality of two ROC curves in a
paired design can constructed by 35 / Var(Bg), where (35 is the usual partial likeli-
hood estimate and Var(@) is the sandwich estimate of the standard error that takes

into account the paired observations.

4 Example

Zajick et al (2005) report a study on the utility of chemical shift magnetic resonance
in differentiating normal, benign and malignant vertebral marrow processes. The
marker of interest is the percent difference between the in-phase and out-phase signal
intensities. Their focus was on establishing a range of values for signal intensity
change in normal vertebral marrow. Here we use their data for an objective that has
not been pursued in their article: evaluating the ability of signal intensity change in
discriminating between normal and benign vertebral marrow processes.

A total of 569 normal vertebrae were evaluated on 75 patients, as compared with
215 benign lesions in 92 patients. Figure 2 presents the histograms of the signal
intensity change for normal and benign vertebrae separately. The two distributions

have some overlap suggesting that the marker may not have the ability to discriminate
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the two classes. The empirical ROC points, represented with open circles in Figure
3, verifies this suspicion since it is only slightly better than the diagonal line.

Prior to the employment of the Lehmann based ROC curve, it is prudent to con-
firm the proportional hazards assumption. The thick line in Figure 4 is the observed
score process and the dotted lines are the sample paths generated from a simulated
score process obtained by replacing the local martingale residuals with their observed
counting process multiplied by independent standard normal random variables (Lin
et al., 1993). The score process is the derivative of the partial loglikelihood function,
used to estimate the regression coefficient 3 in the proportional hazards model. The
term process is used to indicate that the derivative is indexed by the marker variable.
This resampling procedure is repeated 100 times to generate the 100 sample paths
depicted in Figure 4. The simulated paths are generated under the null hypothesis
that the proportional hazards model is the correct fit. This figure was produced using
SAS code that is provided in the appendix. Since the observed process is typical of
the sample paths obtained under the simulated proportional hazards model, there is
no evidence against proportional hazards between normal and benign patients, vali-
dating the assumptions underlying the ROC curves in Figure 3. For comparison we
also provide a binormal fit to the ROC curve (dotted line in Figure 5).

In our first analysis we ignore the fact that patients contribute multiple vertebrae
to the analysis and assume that the signal intensity change is independent across
vertebrae, conditional on the gold standard (normal/benign). Using the partial likeli-
hood, = —0.355 (9 = 0.701) with a standard error of 0.088. The resulting member
of the Lehmann family of ROC curves is plotted with a solid line and the dotted

lines around it represent the asymptotic pointwise 95% confidence intervals. We then
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obtained B using estimating equations to adjust for the clustering due to multiple
observations contribued for each patient. The coefficient 3 is again estimated to be
—0.355, but the standard error is now 0.144. The wider set of dotted lines in Figure
3 represent the confidence intervals obtained using the marginal model.

The area under the curve is 0.588 with a standard error of 0.021 (ignoring clus-
tering) or 0.035 (adjusted for clustering). The corresponding confidence limits are
(0.546, 0.630) and (0.518, 0.658) confirming the difficulty of distinguishing between
the normal and benign processes. In contrast, the area under the empirical curve is
0.597 with a standard error of 0.025, which is very close to the estimates obtained
above ignoring clustering.

Finally, the ROC analysis is adjusted for age. Typically, vertebral marrow pro-
cesses are more difficult to image in older patients, due to the effects of aging on
the vertebrae and disease-related abnormalities. We first fit the proportional haz-
ards regression model (10) with U representing age measured in years. The resulting
parameter estimates and standard errors (in parentheses) are given in Table 1. The
coefficient estimate 53 is positive indicating a decrease in accuracy with increasing age,
however it is not significantly different from 0 when clustering is taken into account.
Figure 6 displays the AUC as a function of age, where the decreasing discriminatory
power of the percent difference in signal intensities in older patients can be visualized.

The increase in standard errors and the widths of the confidence intervals in
Table 1 when adjusted for clustering is notable. This underscores the importance
of adjusting for clustering, especially in data sets like this when the marker values

exhibit substantial intra-patient correlation.
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5 Discussion

In this article we presented a model based method to obtain smooth ROC curves. The
model is based on the Lehmann (or proportional hazards) assumption and can accom-
modate a variety of research questions such as covariate adjustments and clustered
data. All the analyses can be performed with the built-in functionality of off-the-
shelf software. The approach does not require a full parametric specification of the
distribution of the marker values for the two reference populations. The price for this
flexibility is a loss of efficiency relative to an analysis based on a correctly specified
parametric model (Oakes, 1977).

A popular alternative approach in ROC analysis is the binormal model, which as-
sumes that the marker values are normally distributed, possibly after being subjected
to a monotone transformation. The binormal model specifies the ROC curve with two
parameters. In contrast, the Lehmann assumption is equivalent to assuming the exis-
tence of a monotone transformation producing marker values with an extreme value
distribution, the logarithm of a Weibull distribution (Kalbfleisch, 1978), but does not
require that the transformation is specified or even estimated. The Lehmann family
of ROC curves is indexed by a single parameter. Thus, the binormal model is less
robust in its normal parametric specification, but is more flexible in the number of
parameters used to specify this distribution.

A natural question of pratical importance is choosing between binormal and
Lehmann models. Goodness-of-fit tests using the score process is helpful in deciding
whether a Lehman model is a good fit. Standard methods, such as Q-Q plots or

the Shapiro-Wilk test, for checking the normality of marker values separately in gold
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standard negative and positive groups can be used for deciding whether the binormal
model fits the data reasonably well. More sophisticaed methods are available for the
binormal model as well (Cai and Zheng, 2007). If only one of the two models is a
good fit then it would be the prudent choice. If both models provide good fits then
the choice may depend on non-statistical concerns, such as interpretation and com-
munication of the results to the clinicians or software preferences of the statistician
analyzing the data.

The proposed model has two major advantages for the practicing statistician.
Both of these advantages stem from the regression representation. The first advantage
is operational. The proportional hazards model has become the primary vehicle
for the analysis of survival data, and all mainstream statistical packages provide
estimates, inferences, and model diagnostics for this model. This machinery can
be readily used with no additional effort for ROC analysis. The second advantage is
conceptual. It is possible to formulate most practical ROC problems using a regression
model. For example, simultaneous modeling and comparison of two or more markers
can be seen as a regression problem with dummy variables. Covariate adjustment,
which is sometimes necessary because a covariate is thought to influence the accuracy
of the marker, is naturally modeled through a regression framework. Clustered data,
with individuals contributing multiple marker data, can be analyzed using marginal
regression models that enable a robust variance estimate. Each of these ROC analyses

can be performed using the available proportional hazards software.
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Appendix

In this appendix we provide simple statements to fit the univariate or marginal re-
gression models described in Sections 2, 3 and 4. The code here will produce partial
likelihood estimates of the regression parameter 3 and their attendant variance esti-
mates. The desired ROC curve can then be produced using the techniques explained
in Section 2. In addition, code used to assess the proportional hazards assumption,
as described in Section 4, is presented. We assume that the working data set is called
ph with the marker called signal and gold standard called group. In the case of

clustered data, the clustering variable is called name.

5.1 SAS Code

The following code fits the proportional hazards model. The option descending is
helpful when higher values of the gold standard variable is indicative of disease, which
is the most common coding in pratice.
proc phreg data=ph;
class group / descending;
model signal=group ;
assess ph / npath=100; run;
The marginal model of Section 3.2 can be fit by the following modification:
proc phreg data=ph covsandwich(aggregate);
class group / descending;
model signal=group ;

id name;
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run;

In this code id statement identifies the clustering variable and the covsandwich
option requires the use of variance estimates based on the sandwich method.

The graphical method of model checking described in Section 4 is performed using
the assess statement as shown below. The option npath specifies the number of
sample paths to be used. It is not necessary to fit the marginal to perform the model
check; assess statememt can be used with the basic model as well.
proc phreg data=ph covsandwich(aggregate);
class group / descending;
model signal=group ;

assess ph / npath=100;

id name;
run;
5.2 R Code

Proportional hazards fitting in R is primarily achieved by the function coxph library
survival. The following command fits the basic model without clustering
coxph(Surv(signal) ~ factor(group),data=ph)
and the following fits the marginal model using the robust variance estimate
coxph (Surv(signal) “factor (group)+cluster(name) ,data=ph)

The graphical method of model checking is not available in this library, but an
alternate method due to Grambsch and Therneau (1994), which produces a p-value

for the null hypothesis that the data follow proportional hazards is available:
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cox.zph(coxph(Surv(signal) “factor(group) ,data=ph))

5.3 STATA Code

In STATA, one first needs to set the stage for propotional hazards analysis by stset
signal before fitting the basic model using stcox i.group or the marginal with
the robust estimate using stcox i.group, robust. Graphical model checking is not
available but the test that is performed by cox.zph in R can be conducted by the
following sequence of statements:

stcox group, schoenfeld(temp)

estat phtest
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Table 1: Age-adjusted parameter estimates and standard errors

A ~

Model Clustering Ion B3, B3

Age (years) | Ignored |-1.288 (0.446) | -0.017 (0.006) | 0.014 (0.007)

Age (years) | Adjusted |-1.288 (0.894) | -0.017 (0.009) | 0.014 (0.013)

23




Figures

Figure 1: Members of the Lehmann family with parameter € in equation (1) ranging
from 0.1 (closest to 45-degree line) to 0.9.

Figure 2: Histogram of percent difference between the in-phase and out-phase signal
intensities for normal and benign vertebrae

Figure 3: Empirical ROC points (open circles), smooth ROC curve (solid line) and
95% pointwise confidence limits using the partial likelihood (narrower dotted lines)
and marginal model (wider dotted lines)

Figure 4: Score process for checking the assumption of proportional hazards.
Figure 5: Lehmann (solid line) and binormal (dotted line) ROC curves overlaid

Figure 6: AUC as a function of age.
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